The location probability effects of saccade reaction times are modulated in the frontal eye fields but not in the supplementary eye field.
نویسندگان
چکیده
The visual system constantly utilizes regularities that are embedded in the environment and by doing so reduces the computational burden of processing visual information. Recent findings have demonstrated that probabilistic information can override attentional effects, such as the cost of making an eye movement away from a visual target (antisaccade cost). The neural substrates of such probability effects have been associated with activity in the superior colliculus (SC). Given the immense reciprocal connections to SC, it is plausible that this modulation originates from higher oculomotor regions, such as the frontal eye field (FEF) and the supplementary eye field (SEF). To test this possibility, the present study employed theta burst transcranial magnetic stimulation (TMS) to selectively interfere with FEF and SEF activity. We found that TMS disrupted the effect of location probability when TMS was applied over FEF. This was not observed in the SEF TMS condition. Together, these 2 experiments suggest that the FEF plays a critical role not only in initiating saccades but also in modulating the effects of location probability on saccade production.
منابع مشابه
Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation.
We investigated how the brain selects the targets for eye movements, a process in which the outcome of visual processing is converted into guided action. Macaque monkeys were trained to make a saccade to fixate a salient target presented either alone or with multiple distractors during visual search. Neural activity was recorded in the frontal eye field, a cortical area at the interface of visu...
متن کاملFunctional anatomy of pursuit eye movements in humans as revealed by fMRI.
We have investigated the functional anatomy of pursuit eye movements in humans with functional magnetic imaging. The performance of pursuit eye movements induced activations in the cortical eye fields also activated during the execution of visually guided saccadic eye movements, namely in the precentral cortex [frontal eye field (FEF)], the medial superior frontal cortex (supplementary eye fiel...
متن کاملRepetition suppression dissociates spatial frames of reference in human saccade generation.
The path from perception to action involves the transfer of information across various reference frames. Here we applied a functional magnetic resonance imaging (fMRI) repetition suppression paradigm to determine the reference frame(s) in which the cortical activity is coded at several phases of the sensorimotor transformation for a saccade, including sensory processing, saccade planning, and s...
متن کاملHuman eye fields in the frontal lobe as studied by epicortical recording of movement-related cortical potentials.
We studied the generator location of premovement subcomponents of movement-related cortical potentials (MRCPs) [Bereitschaftspotential (BP), negative slope (NS') and motor potential (MP)] associated with voluntary, self-paced horizontal saccade in the human frontal lobe. Self-paced horizontal saccade, wrist (or middle finger) extension and foot dorsiflexion were employed in 10 patients (lateral...
متن کاملThe Human Frontal Oculomotor Cortical Areas Contribute Asymmetrically to Motor Planning in a Gap Saccade Task
BACKGROUND Saccadic eye movements are used to rapidly align the fovea with the image of objects of interest in peripheral vision. We have recently shown that in children there is a high preponderance of quick latency but poorly planned saccades that consistently fall short of the target goal. The characteristics of these multiple saccades are consistent with a lack of proper inhibitory control ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 21 6 شماره
صفحات -
تاریخ انتشار 2011